Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Deciphering the Impact of a Bacterial Infection on Meiotic Recombination in Arabidopsis with Fluorescence Tagged Lines.

Identifieur interne : 000189 ( Main/Exploration ); précédent : 000188; suivant : 000190

Deciphering the Impact of a Bacterial Infection on Meiotic Recombination in Arabidopsis with Fluorescence Tagged Lines.

Auteurs : Ariane Gratias [France] ; Valérie Geffroy [France]

Source :

RBID : pubmed:32708324

Abstract

Plants are under strong evolutionary pressure to maintain surveillance against pathogens. One major disease resistance mechanism is based on NB-LRR (NLR) proteins that specifically recognize pathogen effectors. The cluster organization of the NLR gene family could favor sequence exchange between NLR genes via recombination, favoring their evolutionary dynamics. Increasing data, based on progeny analysis, suggest the existence of a link between the perception of biotic stress and the production of genetic diversity in the offspring. This could be driven by an increased rate of meiotic recombination in infected plants, but this has never been strictly demonstrated. In order to test if pathogen infection can increase DNA recombination in pollen meiotic cells, we infected Arabidopsis Fluorescent Tagged Lines (FTL) with the virulent bacteria Pseudomonas syringae. We measured the meiotic recombination rate in two regions of chromosome 5, containing or not an NLR gene cluster. In all tested intervals, no significant difference in genetic recombination frequency between infected and control plants was observed. Although it has been reported that pathogen exposure can sometimes increase the frequency of recombinant progeny in plants, our findings suggest that meiotic recombination rate in Arabidopsis may be resilient to at least some pathogen attack. Alternative mechanisms are discussed.

DOI: 10.3390/genes11070832
PubMed: 32708324
PubMed Central: PMC7397157


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Deciphering the Impact of a Bacterial Infection on Meiotic Recombination in
<i>Arabidopsis</i>
with Fluorescence Tagged Lines.</title>
<author>
<name sortKey="Gratias, Ariane" sort="Gratias, Ariane" uniqKey="Gratias A" first="Ariane" last="Gratias">Ariane Gratias</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Orsay</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Orsay</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Geffroy, Valerie" sort="Geffroy, Valerie" uniqKey="Geffroy V" first="Valérie" last="Geffroy">Valérie Geffroy</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Orsay</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Orsay</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32708324</idno>
<idno type="pmid">32708324</idno>
<idno type="doi">10.3390/genes11070832</idno>
<idno type="pmc">PMC7397157</idno>
<idno type="wicri:Area/Main/Corpus">000176</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000176</idno>
<idno type="wicri:Area/Main/Curation">000176</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000176</idno>
<idno type="wicri:Area/Main/Exploration">000176</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Deciphering the Impact of a Bacterial Infection on Meiotic Recombination in
<i>Arabidopsis</i>
with Fluorescence Tagged Lines.</title>
<author>
<name sortKey="Gratias, Ariane" sort="Gratias, Ariane" uniqKey="Gratias A" first="Ariane" last="Gratias">Ariane Gratias</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Orsay</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Orsay</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Geffroy, Valerie" sort="Geffroy, Valerie" uniqKey="Geffroy V" first="Valérie" last="Geffroy">Valérie Geffroy</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Orsay</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Orsay</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genes</title>
<idno type="eISSN">2073-4425</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants are under strong evolutionary pressure to maintain surveillance against pathogens. One major disease resistance mechanism is based on NB-LRR (NLR) proteins that specifically recognize pathogen effectors. The cluster organization of the NLR gene family could favor sequence exchange between NLR genes via recombination, favoring their evolutionary dynamics. Increasing data, based on progeny analysis, suggest the existence of a link between the perception of biotic stress and the production of genetic diversity in the offspring. This could be driven by an increased rate of meiotic recombination in infected plants, but this has never been strictly demonstrated. In order to test if pathogen infection can increase DNA recombination in pollen meiotic cells, we infected
<i>Arabidopsis</i>
Fluorescent Tagged Lines (FTL) with the virulent bacteria
<i>Pseudomonas syringae</i>
. We measured the meiotic recombination rate in two regions of chromosome 5, containing or not an NLR gene cluster. In all tested intervals, no significant difference in genetic recombination frequency between infected and control plants was observed. Although it has been reported that pathogen exposure can sometimes increase the frequency of recombinant progeny in plants, our findings suggest that meiotic recombination rate in
<i>Arabidopsis</i>
may be resilient to at least some pathogen attack. Alternative mechanisms are discussed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">32708324</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2073-4425</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>Genes</Title>
<ISOAbbreviation>Genes (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>Deciphering the Impact of a Bacterial Infection on Meiotic Recombination in
<i>Arabidopsis</i>
with Fluorescence Tagged Lines.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E832</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/genes11070832</ELocationID>
<Abstract>
<AbstractText>Plants are under strong evolutionary pressure to maintain surveillance against pathogens. One major disease resistance mechanism is based on NB-LRR (NLR) proteins that specifically recognize pathogen effectors. The cluster organization of the NLR gene family could favor sequence exchange between NLR genes via recombination, favoring their evolutionary dynamics. Increasing data, based on progeny analysis, suggest the existence of a link between the perception of biotic stress and the production of genetic diversity in the offspring. This could be driven by an increased rate of meiotic recombination in infected plants, but this has never been strictly demonstrated. In order to test if pathogen infection can increase DNA recombination in pollen meiotic cells, we infected
<i>Arabidopsis</i>
Fluorescent Tagged Lines (FTL) with the virulent bacteria
<i>Pseudomonas syringae</i>
. We measured the meiotic recombination rate in two regions of chromosome 5, containing or not an NLR gene cluster. In all tested intervals, no significant difference in genetic recombination frequency between infected and control plants was observed. Although it has been reported that pathogen exposure can sometimes increase the frequency of recombinant progeny in plants, our findings suggest that meiotic recombination rate in
<i>Arabidopsis</i>
may be resilient to at least some pathogen attack. Alternative mechanisms are discussed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gratias</LastName>
<ForeName>Ariane</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Geffroy</LastName>
<ForeName>Valérie</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Genes (Basel)</MedlineTA>
<NlmUniqueID>101551097</NlmUniqueID>
<ISSNLinking>2073-4425</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arabidopsis</Keyword>
<Keyword MajorTopicYN="N">Fluorescent Tagged Lines</Keyword>
<Keyword MajorTopicYN="N">NLR genes</Keyword>
<Keyword MajorTopicYN="N">Pseudomonas syringae</Keyword>
<Keyword MajorTopicYN="N">biotic stress</Keyword>
<Keyword MajorTopicYN="N">meiotic recombination</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32708324</ArticleId>
<ArticleId IdType="pii">genes11070832</ArticleId>
<ArticleId IdType="doi">10.3390/genes11070832</ArticleId>
<ArticleId IdType="pmc">PMC7397157</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2001 Feb;157(2):831-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11157000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Apr;15(4):809-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Dec 2;354(6316):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27934708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Nov;151(3):1048-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19776165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2013;51:291-319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23682913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2014 Aug 12;12(8):e1001930</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25116939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3913-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Feb;181(2):405-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19087965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Aug 14;9:1185</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30154814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2011 Aug 15;124(Pt 16):2687-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21771883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Nov;10(11):1861-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2019 Jan 9;9(1):229-237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30459180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Nov;11(11):2099-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 May 17;10:653</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31164899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Apr;38(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15053755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012;8(7):e1002799</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22844245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Apr;8(2):129-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15752991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012;8(10):e1002968</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23055940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Nov 09;10(11):e0142266</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26550833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:297-327</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25494464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2013 Nov;8(11):2119-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24113785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2019 Apr;48:18-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30849712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jun 12;423(6941):760-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12802336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Jul 10;11(7):e1005369</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26161528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Nov;7(11):e1002354</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22072983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 2011 May 10;709-710:7-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21376739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013;9(1):e1003165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23300481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Aug 14;349(6249):747-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26273057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Radiat Res. 2010 Aug;174(2):228-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20681789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2010 Jul 12;2:441-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20624746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Nov 21;52(4):602-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24207055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(1):41-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18193020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(5):1714-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17311811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2017 Aug;38:59-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28494248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1995 Sep;141(1):373-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8536984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2002 Mar;30(3):311-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11836502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Sep 20;10(1):4310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31541084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Apr 03;10(4):e1004030</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24699527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2007 Aug;3(8):e132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17696612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Aug;11(8):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20585331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Oct 9;13(10):e0203481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30300349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Dec 12;91(6):821-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9413991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2019 Nov;213(3):771-787</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31527048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1949 Sep;34(5):607-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17247336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2007 Dec;17(6):493-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17942300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2006 Sep;7(5):437-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Jul 16;11(7):e1005372</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26182244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Mar 21;4:61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23519399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 31;442(7106):1046-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16892047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2016 Jul 14;12(7):e1006179</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27415776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 22;336(6088):1588-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22723424</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Orsay</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Île-de-France">
<name sortKey="Gratias, Ariane" sort="Gratias, Ariane" uniqKey="Gratias A" first="Ariane" last="Gratias">Ariane Gratias</name>
</region>
<name sortKey="Geffroy, Valerie" sort="Geffroy, Valerie" uniqKey="Geffroy V" first="Valérie" last="Geffroy">Valérie Geffroy</name>
<name sortKey="Geffroy, Valerie" sort="Geffroy, Valerie" uniqKey="Geffroy V" first="Valérie" last="Geffroy">Valérie Geffroy</name>
<name sortKey="Gratias, Ariane" sort="Gratias, Ariane" uniqKey="Gratias A" first="Ariane" last="Gratias">Ariane Gratias</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000189 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000189 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32708324
   |texte=   Deciphering the Impact of a Bacterial Infection on Meiotic Recombination in Arabidopsis with Fluorescence Tagged Lines.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32708324" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020